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Abstract. Object detection is a hot topic with various applications in
computer vision, e.g., image understanding, autonomous driving, and
video surveillance. Much of the progresses have been driven by the avail-
ability of object detection benchmark datasets, including PASCAL VOC,
ImageNet, and MS COCO. However, object detection on the drone plat-
form is still a challenging task, due to various factors such as view point
change, occlusion, and scales. To narrow the gap between current object
detection performance and the real-world requirements, we organized the
Vision Meets Drone (VisDrone2018) Object Detection in Image challenge
in conjunction with the 15th European Conference on Computer Vision
(ECCV 2018). Specifically, we release a large-scale drone-based dataset,
including 8, 599 images (6, 471 for training, 548 for validation, and 1, 580
for testing) with rich annotations, including object bounding boxes, ob-
ject categories, occlusion, truncation ratios, etc. Featuring a diverse real-
world scenarios, the dataset was collected using various drone models,
in different scenarios (across 14 different cities spanned over thousands
of kilometers), and under various weather and lighting conditions. We
mainly focus on ten object categories in object detection, i.e., pedes-
trian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and
tricycle. Some rarely occurring special vehicles (e.g., machineshop truck,
forklift truck, and tanker) are ignored in evaluation. The dataset is ex-
tremely challenging due to various factors, including large scale and pose
variations, occlusion, and clutter background. We present the evaluation
protocol of the VisDrone-DET2018 challenge and the comparison results
of 38 detectors on the released dataset, which are publicly available on
the challenge website: http://www.aiskyeye.com/. We expect the chal-
lenge to largely boost the research and development in object detection
in images on drone platforms.

Keywords: Performance evaluation, drone, object detection in images.
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1 Introduction

Detecting objects in images, which aims to detect objects of the predefined set of
object categories (e.g., cars and pedestrians), is a problem with a long history [9,
17, 32, 40, 49]. Accurate object detection would have immediate and far reaching
impact on many applications, such as image understanding, video surveillance,
and anomaly detection. Although object detection attracts much research and
has achieved significant advances with the deep learning techniques in recent
years, these algorithms are not usually optimal for dealing with sequences or
images captured by drone-based platforms, due to various challenges such as
view point change, scales and occlusion.

To narrow the gap between current object detection performance and the
real-world requirements, we organized the “Vision Meets Drone - Object Detec-
tion in Images (VisDrone-DET2018) challenge, which is one track of the “Vision
Meets Drone: A Challenge” (or VisDrone2018, for short) on September 8, 2018,
in conjunction with the 15th European Conference on Computer Vision (ECCV
2018) in Munich, Germany. We collected a large-scale object detection dataset
in real scenarios with detailed annotations. The VisDrone2018 challenge mainly
focus on human and vehicles in our daily life. The comparisons of the proposed
dataset and previous datasets are presented in Table 1.

We invite researchers to submit algorithms to detect objects of ten predefined
categories (e.g., pedestrian and car) from individual images in the VisDrone-
DET2018 dataset, and share their research results at the workshop. We believe
this comprehensive challenge benchmark is useful to further boost research on
object detection on drone platforms. The authors of the detection algorithms in
this challenge have an opportunity to share their ideas and publish the source
code at our website: http://www.aiskyeye.com/, which are helpful to promote
the development of object detection algorithms.

2 Related Work

2.1 Existing Datasets

Several object detection benchmarks have been collected for evaluating object
detection algorithms. Enzweiler and Gavrila [12] present the Daimler dataset,
captured by a vehicle driving through urban environment. The dataset includes
3, 915 manually annotated pedestrians in video images in the training set, and
21, 790 video images with 56, 492 annotated pedestrians in the testing set. The
Caltech dataset [11] consists of approximately 10 hours of 640×480 30Hz videos
taken from a vehicle driving through regular traffic in an urban environment. It
contains ∼ 250, 000 frames with a total of 350, 000 annotated bounding boxes of
2, 300 unique pedestrians. The KITTI-D benchmark [19] is designed to evaluate
the car, pedestrian, and cyclist detection algorithms in autonomous driving sce-
narios, with 7, 481 training and 7, 518 testing images. Mundhenk et al.[34] create
a large dataset for classification, detection and counting of cars, which contains
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Table 1: Comparisons of current state-of-the-art benchmarks and datasets for
object detection. Note that, the resolution indicates the maximum resolution of
the videos/images included in the dataset.

Datasets scen. #img. cat. avg. #labels/cat. res. occ. year

UIUC [1] life 1, 378 1 739 200× 150 2004
INRIA [9] life 2, 273 1 1, 774 96× 160 2005
ETHZ [13] life 2, 293 1 10.9k 640× 480 2007
TUD [2] life 1, 818 1 3, 274 640× 480 2008

EPFL Car [35] exhibition 2, 000 1 2, 000 376× 250 2009
Caltech [11] driving 249k 1 347k 640× 480

√
2012

KITTI [19] driving 15.4k 2 80k 1241× 376
√

2012
VOC2012 [14] life 22.5k 20 1, 373 469× 387

√
2012

ImageNet [41] life 456.2k 200 2, 007 482× 415
√

2013
MS COCO [31] life 328.0k 91 27.5k 640× 640 2014

VEDAI [36] satellite 1.2k 9 733 1024× 1024 2015
COWC [34] aerial 32.7k 1 32.7k 2048× 2048 2016
CARPK [26] drone 1, 448 1 89.8k 1280× 720 2017

VisDrone2018 drone 8, 599 10 46.6k 2000× 1500
√

2018

32, 716 unique cars from six different image sets, each covering a different geo-
graphical location and produced by different imagers. The recent UA-DETRAC
benchmark [47, 33] provides 1, 210k objects in 140k frames for vehicle detection.

The PASCAL VOC dataset [16, 15] is one of the pioneering works in generic
object detection, which is designed to provide a standardized test bed for ob-
ject detection, image classification, object segmentation, person layout, and ac-
tion classification. ImageNet [10, 41] follows the footsteps of the PASCAL VOC
dataset by scaling up more than an order of magnitude in the number of object
classes and images, i.e., PASCAL VOC 2012 with 20 object classes and 21, 738
images vs. ILSVRC2012 with 1, 000 object classes and 1, 431, 167 annotated im-
ages. Recently, Lin et al.[31] release the MS COCO dataset, containing more
than 328, 000 images with 2.5 million manually segmented object instances. It
has 91 object categories with 27k instances on average per category. Notably, it
contains object segmentation annotations which are not available in ImageNet.

2.2 Review of Object Detection Methods

Classical object detectors. In early days, the object detection methods are
constructed based on the sliding-window paradigm, which use the hand-crafted
features and classifiers on dense image grids to locate objects. As one of previous
most popular framework, Viola and Jones [45] use Haar feature and Adaboost al-
gorithm to learn a series of cascaded classifiers for face detection, which achieves
accurate results with high efficiency. Felzenszwalb et al. [17] develop an effective
object detection method based on mixtures of multiscale deformable part models.
Specifically, they calculate the Histograms of Oriented Gradients (HOG) features
on each part of object and train the latent SVM (a reformulation of MI-SVM in
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terms of latent variables) for robust performance. However, the classical object
detectors do not perform well in challenging scenarios. In recent years, with the
advant of deep convolutional neural network (CNN), the object detection field is
dominated by the CNN-based detectors, which can be roughly divided into two
categories, i.e., the two-stage approach and the one-stage approach.

Two-stage CNN-based methods. The two-stage approach first generates a
pool of object proposals by a separated proposal generator and then predicts the
accurate object regions and the corresponding class labels, such as R-CNN [21],
SPP-Net [24], Fast R-CNN [20], Faster R-CNN [40], R-FCN [7], Mask R-CNN
[23], and FPN [29].

R-CNN [21] is one of the pioneering works using the CNN model pre-trained
on ImageNet, which extracts a fixed-length feature vector from each proposal us-
ing a CNN, and then classifies each region with category-specific linear support
vector machine (SVM). SPP-Net [24] proposes the SPP layer that pools the fea-
tures and generates fixed length outputs to remove the fixed input size constraint
of the CNN model. In contrast to SPP [24], Fast R-CNN [20] designs a single-
stage training algorithm that jointly learns to classify object proposals and refine
their spatial locations in an end-to-end way. Faster R-CNN [40] further improves
Fast R-CNN using a region proposal network instead of the selective search al-
gorithm [44] to extract the region proposals. The R-FCN method [7] develops
a fully convolutional network (FCN) to solve object detection, which constructs
a set of position-sensitive maps using a bank of specialized convolutional layers
to incorporate translation variance into FCN. Recently, Lin et al. [29] exploit
the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to
construct feature pyramids with marginal extra cost to improve the detection
performance. In [28], the head of network is designed as light as possible to de-
cease the computation cost, by using a thin feature map and a cheap R-CNN
subnet (pooling and single fully-connected layer). The aforementioned methods
share almost the same pipeline for object detection (i.e., region proposal gener-
ation, feature extraction, and region classification and regression). The pixels or
feature re-sampling of the region proposals is a bottleneck to improve running
efficiency.

One-stage CNN-based methods. Different from the two-stage approach, the
one-stage approach directly predicts the object locations, shapes and the class
labels without the proposal extraction stage, which can run in high efficiency. The
community witnesses the noticeable improvements in this direction, including
YOLO [37], SSD [32], DSSD [18], RefineDet [49], and RetinaNet [30].

Specifically, YOLO [37] formulates object detection as a regression problem
to spatially separated bounding boxes and associated class probabilities. After
that, Redmon et al. [38] improves YOLO in various aspects, such as adding batch
normalization on all of the convolutional layers, using anchor boxes to predict
bounding boxes, and using multi-scale training. SSD [32] takes advantage of a
set of default anchor boxes with different aspect ratios and scales to discretize
the output space of bounding boxes and fuses predictions from multiple feature
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maps with different resolutions. DSSD [18] augments SSD with deconvolution
layers to introduce additional large scale context in object detection to improve
accuracy, especially for small objects. Zhang et al. [50] enrich the semantics of
object detection features within SSD, by a semantic segmentation branch and a
global activation module. Lin et al. [30] use Focal Loss (RetinaNet) to address the
class imbalance issue in object detection by reshaping the standard cross entropy
loss such that it down-weights the loss assigned to well-classified examples. In
addition, Zhang et al. [49] propose a single-shot detector, RefineDet [49], formed
by two inter-connected modules, i.e., the anchor refinement module and the
object detection module, which achieves high accuracy and efficiency. Moreover,
Chen et al. [6] propose a dual refinement network to boost the performance of
the one-stage detectors, which considers anchor refinement and feature offset
refinement in anchor-offset detection.

Fig. 1: The number of objects with different occlusion degrees of different ob-
ject categories in the training, validation and testing sets for the object
detection in images task.

3 The VisDrone-DET2018 Challenge

As mentioned above, to track and advance the developments in object detection,
we designed the VisDrone-DET2018 challenge, which focuses on detecting ten
predefined categories of objects (i.e., pedestrian, person1, car, van, bus, truck,
motor, bicycle, awning-tricycle, and tricycle) in images on drones. We require
each participating algorithm to predict the bounding boxes of objects in prede-
fined classes with a real-valued confidence. Some rarely occurring special vehicles
(e.g., machineshop truck, forklift truck, and tanker) are ignored in evaluation.
The VisDrone-DET2018 dataset consists of 8, 599 images (6, 471 for training,
548 for validation, 1, 580 for testing) with rich annotations, including object
bounding boxes, object categories, occlusion, and truncation ratios. Featuring a
diverse real-world scenarios, the dataset was collected using various drone plat-
forms (i.e., drones with different models), in different scenarios (across 14 differ-
ent cities spanned over thousands of kilometers), and under various weather and

1 If a human maintains standing pose or walking, we classify it as a pedestrian; other-
wise, it is classified as a person.
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Fig. 2: The number of objects per image vs. percentage of images in the
training, validation and testing sets for object detection in images. The
maximal, mean and minimal number of objects per image in the three subsets
are presented in the legend.

lighting conditions. The manually annotated ground truths for training and val-
idation are made available to users, but the ground truths of the testing set are
reserved in order to avoid (over)fitting of algorithms. We encourage the partici-
pants to use the provided training data, while also allow them to use additional
training data. The use of external data must be indicated during submission.

3.1 Dataset

The dataset and annotation presented in this workshop is expected to be a signif-
icant contribution to the community. As mentioned above, we have collected and
annotated the benchmark dataset consisting of 8, 599 images captured by drone
platforms in different places at different height, which is much larger than any
previously published drone-based datasets. Specifically, we manually annotated
more than 540k bounding boxes of targets of ten predefined categories. Some
example images are shown in Fig. 3. We present the number of objects with dif-
ferent occlusion degrees of different object categories in the training, validation,
and testing sets in Fig. 1, and plot the number of objects per image vs. percent-
age of images in each subset to show the distributions of the number of objects
in each image of the three subsets in Fig. 2. The images of the three subsets are
taken at different locations, but share similar environments and attributes.

In addition, we provide two kinds of useful annotations, occlusion ratio and
truncation ratio. Specifically, we use the fraction of objects being occluded to
define the occlusion ratio, and define three degrees of occlusions: no occlusion
(occlusion ratio 0%), partial occlusion (occlusion ratio 1% ∼ 50%), and heavy
occlusion (occlusion ratio > 50%). For truncation ratio, it is used to indicate the
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Fig. 3: Some annotated example images of the object detection in images task.
The dashed bounding box indicates the object is occluded. Different bounding
box colors indicate different classes of objects. For better visualization, we only
display some attributes.

degree of object parts appears outside a frame. If an object is not fully captured
within a frame, we annotate the bounding box across the frame boundary and
estimate the truncation ratio based on the region outside the image. It is worth
mentioning that a target is skipped during evaluation if its truncation ratio is
larger than 50%.

3.2 Evaluation Protocol

We require each participating algorithm to output a list of detected bounding
boxes with confidence scores for each test image. Following the evaluation pro-
tocol in MS COCO [31], we use the APIoU=0.50:0.05:0.95, APIoU=0.50, APIoU=0.75,
ARmax=1, ARmax=10, ARmax=100 and ARmax=500 metrics to evaluate the results
of detection algorithms. These criteria penalize missing detection of objects as
well as duplicate detections (two detection results for the same object instance).
Specifically, APIoU=0.50:0.05:0.95 is computed by averaging over all 10 intersec-
tion over union (IoU) thresholds (i.e., in the range [0.50 : 0.95] with the uniform
step size 0.05) of all categories, which is used as the primary metric for ranking.
APIoU=0.50 and APIoU=0.75 are computed at the single IoU thresholds 0.5 and
0.75 over all categories, respectively. The ARmax=1, ARmax=10, and ARmax=100

scores are the maximum recalls given 1, 10, 100 and 500 detections per image,
averaged over all categories and IoU thresholds. Please refer to [31] for more
details.
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4 Results and Analysis

4.1 Submitted Detectors

There are 34 different object detection methods from 31 different institutes sub-
mitted to the VisDrone-DET2018 challenge. The VisDrone committee also re-
ports the results of the 4 baseline methods, i.e., FPN (A.35) [29], R-FCN (A.36)
[7], Faster R-CNN (A.37) [40], and SSD (A.38) [32]. For these baselines, the
default parameters are used or set to reasonable values. Thus, there are 38 algo-
rithms in total included in the VisDrone-DET2018 challenge. We present a briefly
overview of the entries and provide the algorithm descriptions in Appendix A.

Ten submitted detectors are improved from the Faster RCNN method [40],
i.e., JNU Faster R-CNN (A.5), Faster R-CNN3 (A.7), MMF (A.8), MMN (A.9),
CERTH-ODI (A.13), MFaster R-CNN (A.14), Faster R-CNN2 (A.16), IITH
DODO (A.18), Faster R-CNN+ (A.19), and DPNet (A.34). Seven detectors are
based on the FPN method[29], including FPN+ (A.1), DE-FPN (A.3), DFS
(A.4), FPN2 (A.11), DDFPN (A.17), FPN3 (A.21), and DenseFPN (A.22).
Three detectors are inspired from RetinaNet [30], including Keras-RetinaNet
(A.27), RetinaNet2 (A.28), and HAL-Retina-Net (A.32). Three detectors, i.e.,
RefineDet+ (A.10), RD4MS (A.24), and R-SSRN (A.30) are based on the Re-
fineDet method [49]. Five detectors, i.e., YOLOv3+ (A.6), YOLOv3++ (A.12),
YOLOv3 DP (A.26), MSYOLO (A.29) and SODLSY (A.33) are based on the
YOLOv3 method [39]. CFE-SSDv2 (A.15) is based on the SSD method[32].
SOD (A.23) is based on the R-FCN method[7]. L-H R-CNN+ (A.25) and AHOD
(A.31) are modified from the light-head R-CNN method [28]. In addition, MSCNN
(A.20) is formed by two sub-networks: a multi-scale object proposal network
(MS-OPN) [4] and an accurate object detection network (AODN) [5]. YOLO-
R-CNN (A.2) and MMF (A.8) are the combinations of YOLOv3 and Faster
R-CNN. We summarize the submitted algorithms in Table 3.

4.2 Overall Results

The overall results of the submissions are presented in Table 2. As shown in
Table 2, we find that HAL-Retina-Net (A.32) and DPNet (A.34) are the only two
algorithms achieving more than 30% AP score. HAL-Retina-Net (A.32) uses the
SE module [27] and downsampling-upsampling [46] to learn channel attention
and spatial attention. DPNet (A.34) employs the framework of FPN [29] to
capture context information in different scales of feature maps. DE-FPN (A.3)
and CFE-SSDv2 (A.15) rank in the third and fourth places with more than
25% AP score, respectively. We also report the detection results of each object
category in Table 4. As shown in Table 4, we observe that all the top three
results of different kinds of objects are produced by the detectors with top four
AP scores (see Table 2), i.e., HAL-Retina-Net (A.32), DPNet (A.34), DE-FPN
(A.3), and CFE-SSDv2 (A.15).

Among the 4 baseline methods provided by the VisDrone committee, FPN
(A.35) achieves the best performance, SSD (A.38) performs the worst, and R-
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Table 2: Object detection results on the VisDrone2018 test-challenge set.
The submitted algorithms are ranked based on the AP score. ∗ indicates that
the detection algorithm is submitted by the committee.

Method AP[%] AP50[%] AP75[%] AR1[%] AR10[%] AR100[%] AR500[%]

HAL-Retina-Net 31.88 46.18 32.12 0.97 7.50 34.43 90.63
DPNet 30.92 54.62 31.17 1.05 8.00 36.80 50.48

DE-FPN 27.10 48.72 26.58 0.90 6.97 33.58 40.57
CFE-SSDv2 26.48 47.30 26.08 1.16 8.76 33.85 38.94

RD4MS 22.68 44.85 20.24 1.55 7.45 29.63 38.59
L-H RCNN+ 21.34 40.28 20.42 1.08 7.81 28.56 35.41

Faster R-CNN2 21.34 40.18 20.31 1.36 7.47 28.86 37.97
RefineDet+ 21.07 40.98 19.65 0.78 6.87 28.25 35.58

DDFPN 21.05 42.39 18.70 0.60 5.67 28.73 36.41
YOLOv3 DP 20.03 44.09 15.77 0.72 6.18 26.53 33.27

MFaster-RCNN 18.08 36.26 16.03 1.39 7.78 26.41 26.41
MSYOLO 16.89 34.75 14.30 0.93 5.98 23.01 26.35

DFS 16.73 31.80 15.83 0.27 2.97 26.48 36.26
FPN2 16.15 33.73 13.88 0.84 6.73 23.32 30.37

YOLOv3+ 15.26 33.06 12.50 0.68 5.77 21.15 23.83
IITH DODO 14.04 27.94 12.67 0.82 5.86 21.02 29.00

FPN3 13.94 29.14 11.72 0.81 6.08 22.98 22.98
SODLSY 13.61 28.41 11.66 0.60 5.20 19.26 23.68

FPN∗ 13.36 27.05 11.81 0.77 5.65 20.54 25.77
FPN+ 13.32 26.54 11.90 0.84 5.87 22.20 22.20
AHOD 12.77 26.37 10.93 0.56 4.36 17.49 18.87
DFP 12.58 25.13 11.43 0.88 6.20 19.63 21.27

YOLO-R-CNN 12.06 27.98 8.95 0.50 4.39 19.78 23.05
MMN 10.40 20.66 9.43 0.41 5.22 18.28 19.97

YOLOv3++ 10.25 21.56 8.70 0.48 4.31 15.61 15.76
Faster R-CNN+ 9.67 18.21 9.54 1.19 6.74 16.40 16.40

R-SSRN 9.49 21.74 7.29 0.36 3.27 17.07 21.63
JNU Faster RCNN 8.72 15.56 8.98 1.02 6.20 12.18 12.18

SOD 8.27 20.02 5.80 0.39 3.78 14.12 17.19
Keras-Retina-Net 7.72 12.37 8.68 0.62 5.65 10.76 10.80

MMF 7.54 16.53 6.03 1.28 5.91 14.28 14.36
R-FCN∗ 7.20 15.17 6.38 0.88 5.35 12.04 13.95

RetinaNet2 5.21 10.02 4.94 0.38 3.54 11.55 14.25
CERTH-ODI 5.04 10.94 4.12 1.65 5.93 9.05 9.05

Faster R-CNN3 3.65 7.20 3.39 0.64 2.41 10.08 21.85
Faster R-CNN∗ 3.55 8.75 2.43 0.66 3.49 6.51 6.53

MSCNN 2.89 5.30 2.89 0.59 2.18 9.33 15.38
SSD∗ 2.52 4.78 2.47 0.58 2.81 4.51 6.41

FCN (A.36) performs better than Faster R-CNN (A.37). These results of the
algorithms are consistent with that in the MS COCO dataset [31].

– SSD (A.38) performs worst, only producing 2.52% AP score. CFE-SSDv2
(A.15) is an improvement of SSD (A.38), which uses a new comprehensive
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Table 3: The descriptions of the submitted algorithms in the VisDrone-DET2018
challenge. The tracking speed (in FPS), GPUs, backbone network, training
datasets (I is imageNet, L is ILSVRC, P is PASCAL VOC, V is VisDrone-
SOT2018 train set, O is other additional datasets) and implementation details
are reported. The ∗ mark is used to indicate the methods submitted by the
VisDrone committee.

Submission Speed GPUs Backbone Train Data Impl.
FPN+(A.1) GTX 1080TI×6 ResNet-101 I,V Python

YOLO-R-CNN(A.2) GTX Titan XP×1 V PyTorch
DE-FPN(A.3) GTX 1080TI×4 ResNeXt-101 C,V

DFS(A.4) GTX Titan PASCAL×2 ResNet-101 I,V Python
JNU Faster R-CNN(A.5) GTX K80×4 ResNet-101 V Python

YOLOv3+(A.6) 19.61 GTX TIT×1 C,V Python
Faster R-CNN3(A.7) 0.14 GTX Titan Xp×2 ResNet-101 V PyTorch

MMF(A.8)
ResNet-152 V

Python
DarkNet-53

MMN(A.9) 8.33 GTX 1080TI×2 ResNet-101 V Python
RefineDet+(A.10) 10 GTX Titan X×4 VGG16 L,V Caffe

FPN2(A.11) GTX 1080TI×1 I,V Caffe
YOLOv3++(A.12) GTX Titan XP×1 DarkNet-53 V PyTorch
CERTH-ODI(A.13) GTX 1070×1 Inception Resnet v2 C,V Python

MFaster R-CNN(A.14) GTX 1080TI×1 ResNet-101 V PyTorch
CFE-SSDv2(A.15) 1 GTX Titan XP×4 VGG16 V PyTorch

Faster R-CNN2(A.16) GTX 1080×1 VGG16 I,V Python

DDFPN(A.17) GTX 1080TI×1 ResNet-101 I,V
Python
C++

IITH DODO(A.18) Tesla P-100×1 Inception ResNet-v2 C,V Python
Faster R-CNN+(A.19) VGG16 I,V Python

MSCNN(A.20) GTX 1080TI×1 V
Caffe

Matlab

FPN3(A.21)
ResNet-50

I,V Python
ResNet-101

DenseFPN(A.22) 8.33 GTX 1080TI×2 ResNet-101 I,V Python
SOD(A.23) GTX Titan X×1 VGG16 V Python

RD4MS(A.24) GTX Titan X×2
ResNet-50

V Caffe
SEResNeXt-50

L-H R-CNN+(A.25) GTX Titan X×1 ResNet-101 V Python
YOLOv3 DP(A.26) 8.33 GTX Titan X×1 V Python

Keras-RetinaNet(A.27) 1.28 GTX Titan X×1 V Python
RetinaNet2(A.28) GTX Titan X×1 V Python
MSYOLO(A.29) GTX 1080×1 V Python
R-SSRN(A.30) 11.8 GTX 1080TI×1 VGG16 L,V Python
AHOD(A.31) GTX Titan X×1 V Python

HAL-Retina-Net(A.32) 4 GTX Titan XP×6 SE-ResNeXt-50 C,V Caffe
SODLSY(A.33) 9 GTX 1080TI×1 V

DPNet(A.34) GTX Titan XP×8
ResNet-50

V Caffe2ResNet-101
ResNeXt

FPN∗ (A.35) GTX Titan X×1 V Python
SSD∗ (A.38) GTX Titan X×1 V Python

R-FCN∗ (A.36) GTX Titan X×1 V Python
Faster R-CNN∗ (A.37) GTX Titan X×1 V Python

feature enhancement mechanism to highlight the weak features of small ob-
jects and adopts the multi-scale testing to further improve the performance,
bringing a significant improvement on AP score (i.e., 26.48%), ranking the
fourth place.

– Faster R-CNN (A.37) performs slightly better than 2.89% AP. DPNet (A.34)
uses three Faster R-CNN models to detect different scales of objects. Specifi-
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cally, the authors train Faster R-CNN with FPN [29] architecture with mul-
tiple scales (i.e., 1000 × 1000, 800 × 800, 600 × 600), achieving the second
best AP score (30.92%). Faster R-CNN2 (A.16) and Faster R-CNN+ (A.19)
design the size of anchors to adapt to the distribution of objects, produc-
ing 21.34% and 9.67% AP, respectively. MFaster R-CNN (A.14) replaces the
ROI pooling layer with ROI align layer proposed in Mask R-CNN [23] to get
better results for small object detection, i.e., obtaining 18.08% AP score.

– R-FCN (A.36) achieves much better performance than SSD and Faster R-
CNN, i.e., producing 7.20% AP. However, its accuracy is still not satis-
factory. SOD (A.23) use the pyramid-like prediction network for RPN and
region fully convolutional networks (R-FCN) [7] to improve object detection
performance. In this way, the predictions made by higher level feature maps
contains stronger contextual semantics while the lower level ones integrat-
ing more localized information at finer spatial resolution. It generates 0.93%
high AP score than R-FCN (A.36), i.e., 8.27% vs. 7.20%.

– FPN (A.35) performs the best among the 4 baseline methods by achieving
13.36 AP score, ranking in the middle of all submissions. We speculate that
the extracted semantic feature maps at all scales is effective to deal with
the objects with various scales. To further improve the accuracy, DE-FPN
(A.3) enhances the data augmentation part by image cropping and color
jitter, achieving 27.10% AP, ranking the third place. DDFPN (A.17) uses
the DBPN [22] super resolution network to upsample the image, producing
21.05% AP. FPN2 (A.11) implements an additional keypoint classification
module to help locate the object, improving 2.79% AP score comparing to
FPN (A.35).

4.3 Discussion

As shown in Table 3, we find that there are 18 detectors perform better than
all the baseline methods. The best detector HAL-Retina-Net (A.32) achieves
31.88% AP score, which is still far from satisfactory in real applications. In the
following, we discuss some critical issues in object detection on drone platforms.

Large scale variations. As shown in Fig. 3, the objects have a substantial
difference in scales, even for the objects in the same category. For example, as
shown in the top-left of Fig. 3, some cars are with the large size close to the
bottom side of the image, while the other cars are with the small size close to
the top-right side. This factor greatly challenges the performance of the detec-
tors. For better performance, it is necessary to redesign the anchor scales to
adapt to scales of objects in the dataset, and it is also interesting to design an
automatic mechanism to handle the objects with large scale variations in ob-
ject detection. Meanwhile, fusing multi-level convolutional features to integrate
contextual semantic information is also effective to handle scale variations, just
like the architecture in FPN (A.35). In addition, multi-scale testing and model
ensemble are effective to deal with the scale variations.
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Table 4: AP scores on the VisDrone2018 test-challenge set of each object cate-
gory. ∗ indicates the detection algorithms submitted by the VisDrone committee.
The top three results are highlighted in red, blue and green fonts.

Detectors ped. people bicycle car van truck tricycle awn. bus motor

FPN+ 26.54 24.58 22.29 19.40 15.82 11.90 8.00 3.78 0.84 0.03
YOLO-R-CNN 27.98 24.88 21.41 17.47 13.22 8.95 4.75 1.67 0.26 0.01

DE-FPN 48.72 46.54 43.42 39.2633.6026.58 18.64 10.71 3.34 0.15
DFS 31.80 29.96 27.64 24.46 20.57 15.83 10.43 5.20 1.38 0.06

JNU Faster R-CNN 15.56 14.68 13.66 12.22 10.70 8.98 6.59 3.76 0.99 0.03
YOLOv3+ 33.06 29.90 26.48 22.19 17.71 12.50 7.37 2.89 0.46 0.01

Faster R-CNN3 40.18 37.85 34.92 30.93 26.14 20.31 13.72 7.16 2.10 0.12
MMF 16.53 15.07 13.25 10.85 8.47 6.03 3.56 1.42 0.23 0.01
MMN 20.66 18.74 16.80 14.50 12.10 9.43 6.61 3.77 1.29 0.06

RefineDet+ 40.98 38.11 34.57 30.01 25.11 19.65 13.35 6.91 1.94 0.07
FPN2 33.73 30.73 27.16 23.08 18.55 13.88 8.98 4.32 1.05 0.04

YOLOv3++ 21.56 19.85 17.87 15.11 11.98 8.70 5.08 1.96 0.32 0.01
CERTH-ODI 10.94 9.84 8.70 7.29 5.77 4.12 2.49 1.10 0.19 0.01

MFaster R-CNN 36.26 33.52 30.07 25.92 21.3 16.03 10.56 5.60 1.50 0.04
CFE-SSDv2 47.30 45.23 42.40 38.37 32.89 26.08 18.33 10.17 3.69 0.29

Faster R-CNN2 7.20 6.63 5.99 5.28 4.44 3.39 2.20 1.07 0.23 0.01
DDFPN 42.39 39.42 35.84 31.08 25.42 18.7 11.54 5.13 0.99 0.02

IITH DODO 27.94 25.72 23.04 19.94 16.57 12.67 8.68 4.57 1.28 0.04
Faster R-CNN+ 18.21 16.88 15.51 13.94 11.91 9.54 6.67 3.21 0.81 0.03

MSCNN 5.30 4.96 4.55 4.11 3.60 2.89 2.09 1.10 0.30 0.02
FPN3 29.14 27.04 24.08 20.36 16.33 11.72 7.11 3.05 0.54 0.01

DenseFPN 25.13 23.16 20.77 17.97 14.8 11.43 7.85 3.70 0.93 0.02
SOD 20.02 17.46 14.85 12.10 9.00 5.80 2.67 0.71 0.08 0.00

RD4MS 44.85 41.74 37.87 32.97 27.11 20.24 13.38 6.67 1.85 0.08
L-H R-CNN+ 40.28 37.69 34.41 30.61 25.75 20.42 14.16 7.62 2.40 0.13
YOLOv3 DP 44.09 40.16 35.49 29.69 23.08 15.77 8.53 2.99 0.47 0.01

Keras-RetinaNet 12.37 12.10 11.58 10.97 10.07 8.68 6.61 3.79 1.02 0.03
RetinaNet 10.02 9.29 8.43 7.39 6.25 4.94 3.42 1.85 0.47 0.01
MSYOLO 34.75 32.37 29.32 25.31 20.18 14.3 8.54 3.53 0.57 0.01
R-SSRN 21.74 19.33 16.75 13.74 10.55 7.29 3.93 1.37 0.19 0.01
AHOD 26.37 24.45 21.88 18.68 14.82 10.93 6.81 3.13 0.58 0.01

HAL-Retina-Net 46.18 44.34 42.24 39.6336.2732.12 26.87 20.8816.0114.24
SODLSY 28.41 25.96 23.06 19.65 15.69 11.66 7.46 3.47 0.71 0.02
DPNet 54.62 52.46 49.31 45.0638.9731.17 21.79 11.85 3.78 0.17
FPN∗ 27.05 25.03 22.38 19.32 15.73 11.81 7.75 3.71 0.84 0.03

R-FCN∗ 15.17 13.59 12.09 10.58 8.8 6.38 3.76 1.39 0.19 0.01
Faster R-CNN∗ 8.75 7.62 6.53 5.03 3.72 2.43 1.08 0.32 0.04 0.00

SSD∗ 4.78 4.47 4.13 3.69 3.10 2.47 1.64 0.73 0.14 0.00

Occlusion. Occlusion is one of the critical issue challenging the detection per-
formance, especially in our VisDrone2018 dataset (see Fig. 3). For example, as
shown in Fig. 1, most of the instances in bus and motor categories, are occluded
by other objects or background obstacles, which greatly hurt the detection per-
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formance. Specifically, the best detector HAL-Retina-Net (A.32) only produces
less than 20% AP scores in these two categories. All the other detectors even
produces less than 1% AP score on the motor class. In summary, it is important
and urgent to design an effective strategy to solve the occlusion challenge to
improve the detection performance.

Class imbalance. Class imbalance is another issue to detection performance. As
shown in Fig. 1, there are much less awning-tricycle, tricycle, and bus instances
in the training set than the instances in the car and pedestrian classes. Most
of the detectors perform much better on the car and pedestrian classes than
on the awning-tricycle, tricycle, and bus classes. For example, DPNet (A.34)
produces 45.06% and 54.62% APs on the car and pedestrian classes, while only
produces 11.85%, 21.79%, and 3.78% APs on the awning-tricycle, tricycle, and
bus classes, see Table 4 for more details. The most straightforward and com-
mon approach is using the sampling strategy to balance the samples in different
classes. Meanwhile, some methods (i.e., Keras-RetinaNet (A.27), RetinaNet2
(A.28)) integrate the weights of different object classes in the loss function to
handle this issue, such as Focal Loss [30]. How to solve the class imbalance issue
is still an open problem.

5 Conclusions

This paper reviews the VisDrone-DET2018 challenge and its results. The chal-
lenge contains a large-scale drone-based object detection dataset, including 10, 209
images (6, 471 for training, 548 for validation, and 3, 190 for testing) with rich
annotations, including object bounding boxes, object categories, occlusion sta-
tus, truncation ratios, etc. A set of 38 detectors have been evaluated on the
released dataset. A large percentage of them have been published in recent top
conferences and journals, such as ICCV, CVPR, and TPAMI, and some of them
have not yet been published (available at arXiv). The top three detectors are
HAL-Retina-Net (A.32), DPNet (A.34), and DE-FPN (A.3), achieving 31.8%,
30.92%, and 27.10% APs, respectively.

The VisDrone-DET2018 primary objective is to establish a community-based
common platform for discussion and evaluation of detection performance on
drones. This challenge will not only serve as a meeting place for researchers in
this area but also present major issues and potential opportunities. We hope the
released dataset allows for the development and comparison of the algorithms in
the object detection fields, and workshop challenge provide a way to track the
process. Our future work will be focused on revising the evaluation kit, dataset,
as well as including more challenging vision tasks on the drone platform, through
the feedbacks from the community.
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A Submitted Detectors

In this appendix, we provide a short summary of all algorithms that were con-
sidered in the VisDrone2018 competition. These are ordered according to the
submissions of their final results.

A.1 Improved Feature Pyramid Network (FPN+)

Karthik Suresh, Hongyu Xu, Nitin Bansal, Chase Brown, Yunchao Wei, Zhangyang
(Atlas) Wang, Honghui Shi
k21993@tamu.edu, xuhongyu2006@gmail.com, bansa01@tamu.edu
chasebrown42@tamu.edu, wychao1987@gmail.com, atlaswang@tamu.edu
honghui.shi@ibm.com

FPN+ is improved from the Feature Pyramid Network (FPN) model [29]. The
main changes we made are concluded as follows: (1) We resize the input images
with different scales; (2) We use more scales of smaller anchors; (3) We ensem-
ble FPN models with different anchors and parameters; (4) We employ NMS
as another post processing step to avoid box overlap and multi-scale testing.
Specifically, we use a FPN with ResNet-101 pre-trained weights on ImageNet
as the backbone. We also attempt to make some changes to the training data
(resizing it to different shapes, cutting it into pieces, etc).

A.2 Fusion of Faster R-CNN and YOLOv3 (YOLO-R-CNN)

Wenchi Ma, Yuanwei Wu, Usman Sajid, Guanghui Wang
{wenchima, y262w558,usajid,ghwang}@ku.edu

YOLO-R-CNN is basically a voting algorithm specifically designed for object
detection. Instead of the widely used feature-level fusion for deep neural net-
works, our approach works at the detection-level. We train two different DCNN
models, i.e., Faster R-CNN [40] and YOLOv3 [39]. Then the final detection
results are produced by voting, weighted averages of the two above models.

A.3 Data Enhanced Feature Pyramid Network (DE-FPN)

Jingkai Zhou, Yi Luo, Hu Lin, Qiong Liu
{201510105876, 201721045510, 201721045497}@mail.scut.edu.cn
liuqiong@scut.edu.cn

DE-FPN is based on the Feature Pyramid Network (FPN) model [29] with data
enhancement. Specifically, we enhance the training data by image cropping and
color jitter. We use ResNeXt-101 64-4d as the backbone of FPN with COCO
pre-trained model. We remove level 6 of FPN to improve small object detection.
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A.4 Focal Loss for Object Detection (DFS)

Ke Bo
kebo3@mail2.sysu.edu.cn

DFS is based on ResNet-101 and Feature Pyramid Networks [29]. The features
from Conv2 x are also used to detect objects, which gains about 1% improve-
ments in mAP. Our model use other techniques including multiple scale training
and testing, deformable convolutions and Soft-NMS.

A.5 Faster R-CNN by Jiangnan University (JNU Faster R-CNN)

Haipeng Zhang
6161910043@vip.jiangnan.edu.cn

JNU Faster R-CNN is based on the Faster R-CNN algorithm [40] to complete
the detection task. The source code is from Github repository named faster-
rcnn.pytorch2. We use trainset and valset of the VisDrone2018-DET dataset
without additional training data to train this model. The pre-trained model is
from Faster R-CNN with ResNet-101 backbone.

A.6 Improved YOLOv3: An Incremental Improvement (YOLOv3+)

Siwei Wang, Xintao Lian
285111284@qq.com

YOLOv3+ is improved from YOLO [37]. Specifically, we use the VisDrone2018-
DET train set and pre-trained models on the COCO dataset to fine-tune our
model.

A.7 Improved Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks (Faster RCNN3)

Yiling Liu, Ying Li
liulingyi601@mail.nwpu.edu.cn, lybyp@nwpu.edu.cn

Faster RCNN3 is based on Faster R-CNN [40]. We only use VisDrone2018 train
set as the training set. Our algorithm is implemented in TITAN XP×2, Ubuntu,
pytorch. The testing speed is about 7 s per image. The based network of Faster
RCNN is resnet101.

2 https://github.com/jwyang/faster-rcnn.pytorch
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A.8 The object detection algorithm based on multi-model fusion
(MMF)

Yuqin Zhang, Weikun Wu, Zhiyao Guo, Minyu Huang
{23020161153381,23020171153097}@stu.xmu.edu.cn
{23020171153021,23020171153029}@stu.xmu.edu.cn

MMF is a multi-model fusion based on Faster-RCNN [40] and YOLOv3 [39].
The Faster-RCNN algorithm is a modification of a published one3. We re-write
the codes and re-set the parameters including learning rate, gamma, step size,
scales, anchors and ratios. We use the ResNet-152 as the backbone. The YOLOv3
algorithm is also a modification of a published one4. We modify the anchor set-
ting by the K-means++ algorithm.

Since the number of objects in different categories are very unbalanced in
the train set, we adopt the multi-model fusion method to improve the accuracy.
Specifically, the car category is trained using the Faster-RCNN algorithm and
the rest categories are trained using the YOLOv3 algorithm. Moreover, the rest
categories are divided into two types: one for pedestrian and people, and the
other one for bicycle, van, truck, tricycle, awning-tricycle, bus and motor. Finally,
the detection result is determined by the three models.

A.9 Multi-model Net based on Faster-RCNN (MMN)

Xin Sun
sunxin@ouc.edu.cn

MMN is based on the Faster-RCNN network [40]. We first crop the train images
into small size to avoid the resize operation. Then there cropped images are used
to train different Faster-RCNN networks. Finally we merge the results to obtain
the best classification result.

A.10 An improved Object Detector based on Single-Shot
Refinement Neural Network (RefineDet+)

Kaiwen Duan, Honggang Qi, Qingming Huang
duankaiwen17@mails.ucas.ac.cn, hgqi@jdl.ac.cn, qmhuang@ucas.ac.cn

RefineDet+ improves the single-shot refinement Neural Network (RefineDet)
[49] by proposing a new anchor matching strategy. Our anchor matching strat-
egy is based on center point translation of anchors (CPTMatching). During the
training phase, the detector needs to determine which anchors correspond to an
object bounding box. RefineDet firstly matches each object to the anchor with
the highest jaccard overlap and then matches each anchor to an object with

3 https://github.com/endernewton/tf-faster-rcnn
4 https://github.com/AlexeyAB/darknet
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jaccard overlap higher than a threshold (usually 0.5). However, some nearby an-
chors whose jaccard overlap lower than the threshold may also help the bounding
box regression. In our CPTMatching, we first select bounding boxes predicted
by the anchor refinement module (ARM) [49] to have a jaccard overlap with
any object ground-truth higher than 0.5. For each selected bounding box, we
compute a measurement β, which is a ratio of the center point distance between
its corresponding anchor and its matched ground-truth box to the scale of its an-
chor. Discard those anchors whose β are larger than a threshold. The remaining
anchors are called potential valid anchors. Finally, we align each center point of
those potential valid anchors to the center of their nearest ground-truth boxes.
Anchors are preserved if their jaccard overlap higher than 0.6 with the aligned
ground-truth.

A.11 An improved Object Detector based on Feature Pyramid
Networks (FPN2)

Zhenwei He, Lei Zhang
{hzw, leizhang}@cqu.edu.cn

FPN2 is based on the Feature Pyramid Networks (FPN) object detection frame-
work [29]. To obtain better detection results, we improve the original FPN in
three folds:

– Data expansion. We extend the training set by clipping the images. The
clipped images contain at least one object. New pictures have different pro-
portions of the original pictures. In our implementation, the proportions to
the width or height are set as 0.5 and 0.7, which results in totally 4 kinds of
ratios ([0.5, 0.5], [0.5, 0.7], [0.7, 0.7], [0.7, 0.5] to the width and height, respec-
tively). As a result, the extended datasets has 5 times number of training
pictures compared to the original dataset.

– Keypoint classification. We implement an auxiliary keypoint classifica-
tion task to further improve the detection accuracy. The bounding box is
the border line of the foreground and background, therefore, we suppose
the 4 corners and the center of the bounding box are the keypoints of the
corresponding object. 4 corners of the bounding box are annotated as back-
ground while the center is annotated as the category of the corresponding
object in our implement. We classify the 2 types of points with the features
from the feature map. Suppose the features from the convolution layer are
X ⊂ Rm×n×c, where the m,n stands for the height and width of the feature
map, respectively, c stands for the number of the channels. Since that, we
can calculate m × n features with dimension c for the keypoint classifica-
tion problem. For the training phase, only the features where the keypoints
located are sent into the keypoint classifier. A softmax loss function is im-
plemented to guide the training. Finally, we add a 1× 1 convolution layer to
generate the features for the softmax on the top of the traditional FPN.
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– Fusion of different models. We train our deep model with different ex-
panded datasets to obtain different models. First, we implement the NMS to
generate the detection results of the each deep models. Then, we count the
number of bounding boxes with the score greater than the threshold from
different deep models. If the number is more than half of the deep models, we
will keep the bounding box; otherwise we will discard it. Finally, we perform
NMS again to generate the final detection results.

A.12 You Only Look Once (YOLOv3++)

Yuanwei Wu, Wenchi Ma, Usman Sajid, Guanghui Wang
{y262w558,wenchima,usajid,ghwang}@ku.edu

YOLOv3++ is based on YOLOv3 [39], which is a one stage detection method
without using object proposals. In YOLOv3, a deeper network Darknet-53 is
proposed to perform feature extraction. Furthermore, in order to better handle
small object detection, three different layers with three different receptive filed
are used to predict classes and precise positions for the anchor boxes. Those
anchor boxes priors are still determined using k-means clustering. Multi-scale
training (ranging between 320, 352, · · · , 608), data augmentation and batch nor-
malization are used in the training process to improve the model generalization.

A.13 CERTH’s Object Detector in Images (CERTH-ODI)

Emmanouil Michail, Konstantinos Avgerinakis, Panagiotis Giannakeris, Ste-
fanos Vrochidis, Ioannis Kompatsiaris
{michem, koafgeri, giannakeris, stefanos, ikom}@iti.gr

CERTH-ODI is trained on the whole training set of the VisDrone2018-DET
dataset. However, since pedestrian and cars were dominant, compared to other
classes, in order to balance the training set, we remove several thousand cars
and pedestrians annotations. For the training we use the Inception ResNet-v2
Faster R-CNN model pre-trained on the MSCOCO dataset. In order to provide
more accurate results, we use a combination of different training set-ups: One
with all the available object classes trained until 800, 000 training steps, one with
four-wheel vehicles only (i.e., “car”, “van”, “truck”, “bus”, because they share
similar characteristics) and one with the remaining classes. We apply each model
separately on each image, and NMS on the results and afterwards we merge all
the resulting bounding boxes from the different training models. Subsequently,
we reject overlapping bounding boxes with an IoU of 0.6, which is chosen em-
pirically, excluding several combinations, like people-bicycle, people-motor that
tends to high overlap.
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A.14 Modified Faster-RCNN for small objects detection
(MFaster-RCNN)

Wenrui He, Feng Zhu
{hewenrui,zhufeng}@bupt.edu.cn

MFaster-RCNN is improved from the Faster R-CNN model [40]. Our method
only uses the VisDrone2018-DET train set with data augmentation, including
cropping, zooming and flipping. We use pre-trained Resnet-101 as backbone due
to GPU limit. The tuned hyper-parameters are mainly presented as follows: (1)
The anchor ratio is adjusted from [0.5, 1, 2] to [0.5, 1.5, 2.5] which is calculated
by K-means with training data. (2) The base size of the anchors remains 16 but
the multiplicative scale is adjusted from [4, 8, 16] to [1, 2, 4, 8, 16] to detect very
small objects. (3) The RPN positive overlap threshold which decides whether
the proposal is regarded as a positive sample to train the RPN is adjusted from
0.7 to 0.5, while the RPN negative overlap threshold is adjusted from 0.3 to 0.2.
(4) the foreground and background thresholds for the Fast R-CNN part is 0.5
and 0.1, respectively. The foreground fraction is adjusted from 0.25 to 0.4 as we
find these values perform the best in practice. (5) The maximal number of the
groundtruth boxes allowed to use for training in one input image is adjusted
from 20 to 60 as we have enormous training samples per image in average.

A.15 SSD with Comprehensive Feature Enhancement (CFE-SSDv2)

Qijie Zhao, Feng Ni, Yongtao Wang
{zhaoqijie,nifeng,wyt}@pku.edu.cn

CFE-SSDv2 is an end-to-end one-stage object detector with specially designed
novel module, namely Comprehensive Feature Enhancement (CFE) module. We
first improve the original SSD model [32] by enhancing the weak features for de-
tecting small objects. Our CFE-SSDv25 is designed to enhance detection ability
for small objects. In addition, we apply multi-scale inference strategy. Although
training on input size of 800×800, we have broadened the input size to 2200×2200
when inferencing, leading to further improvement in detecting small objects.

A.16 Faster R-CNN based object detection (Faster R-CNN2)

Fan Zhang
zhangfan 1@stu.xidian.edu.cn

FasterR-CNN2 depends on the VisDrone2018-DET dataset, Faster R-CNN [40],
and adjusts some parameters. For example, we add a small anchor scale 642 to
detect small objects and reducing the mini-batch size from 256 to 128.

5 https://github.com/qijiezhao/CFENet
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A.17 DBPN+Deformable FPN+Soft NMS (DDFPN)

Liyu Lu
coordinate@tju.edu.cn

DDFPN is designed for small object detection. Since the dataset contains a
large amount of small objects, so we scale up the original image first and then
detect the objects. We use the DBPN [22] super resolution network to upsample
the image. The model used for the detection task is Deformable FPN [8, 29].
Bsides, we use Soft-NMS [3] as our non-maximum suppression algorithm.

For network training, we first divide the input image into patches with size of
1024×1024, and obtain 23, 602 training images and their corresponding labels as
training set to train Deformable FPN. Our training process uses OHEM training
methods [42]. The learning rate we use in training is 0.001, and the image input
size we use for training is 1024× 1024. ResNet-101 is used as the backbone and
the weights are initialized using model pre-trained on Image-Net.

For network testing, we use the same method as the training set to divide
the test image into patches with size of 512× 512. Next, we up-sample the pre-
viously obtained test patches to 1024 × 1024 via the DBPN network. Then we
send these testing patches to our trained Deformable FPN to obtain 1024×1024
results. In fact, the size of image corresponds to the size of the original im-
age is 512 × 512. Since the results in different scales are consistent with the
characteristics of visual blind spots, we use multi-scale images for testing pur-
pose, i.e., [688, 688], [800, 800], [12001200], [1400, 1400], [1600, 1600], [2000, 2000].
Finally, we merge the results in each scale derived from the same image back
into one single image, hence we obtain the final test results.

A.18 IIT-H Drone Object DetectiOn (IITH DODO)

Nehal Mamgain, Naveen Kumar Vedurupaka, Joseph K. J., Vineeth N. Balasub-
ramanian
cs17mtech11023@iith.ac.in, naveenkumarvedurupaka@gmai1.com
{cs17mtech01001, vineethnb}@iith.ac.in

IITH DODO is based on the Faster R-CNN architecture [40]. Faster R-CNN
has a Region Proposal Network (RPN) which is trained end-to-end and shares
convolutional features with the detection network thus ameliorating the com-
putational cost of high-quality region proposals. Our model uses the Inception
ResNet-v2 [43] backbone for Faster R-CNN, pre-trained on the COCO dataset.
The anchor sizes are adapted to improve the performance of the detector on
small objects. To reduce the complexity of the model, only anchors of single
aspect ratio are used. Non-maximum suppression is applied both on the region
proposals and final bounding box predictions. Atrous convolutions are also used.
No external data has been used for training and no test-time augmentation is
performed. The performance is the result of the detection pipeline with no en-
semble used.
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A.19 Adjusted Faster Region-based Convolutional Neural Networks
(Faster R-CNN+)

Tiaojio Lee, Yue Fan, Han Deng, Lin Ma, Wei Zhang
{tianjiao.lee, fanyue}@mail.sdu.edu.cn, 67443542@qq.com
forest.linma@gmail.com, davidzhang@sdu.edu.cn

Faster R-CNN+ basically follows the original algorithm of Faster R-CNN [40].
However, we make a few adjustments on Faster R-CNN algorithm to adapt to the
VisDroneDet dataset. The dataset given consists of many variant-sized proposals
which leads to a multi-scale object detection problem. In order to mitigate the
impact of relatively rapid changes in scales of bounding boxes, we add more an-
chors with large sizes to fit those larger objects and keep small anchors unchanged
for detecting tiny objects such as people and cars in long distance. Moreover,
the VisDroneDet dataset has an unbalanced object distribution. When testing
on validation dataset, we find that classification performance for car is much
better than others for the reason that the appearance of cars is more frequent.
To alleviate this problem, we mask out some car bounding boxes by hand for
pursuing better classification performance.

A.20 Multi-Scale Convolutional Neural Networks (MSCNN)

Dongdong Li, Yangliu Kuai, Hao Liu, Zhipeng Deng, Juanping Zhao
moqimubai@sina.cn

MSCNN is a unified and effective deep CNN based approach for simultaneously
detecting multi-class objects in UAV images with large scales variability. Similar
to Faster R-CNN, our method consists of two sub-networks: a multi-scale ob-
ject proposal network (MS-OPN) [4] and an accurate object detection network
(AODN) [5]. Firstly, we redesign the architecture of feature extractor by adopt-
ing some recent building blocks, such as inception module, which can increase
the variety of receptive field sizes. In order to ease the inconsistency between the
sizes variability of objects and fixed filter receptive fields, MS-OPN is performed
with several intermediate feature maps, according to the certain scale ranges of
different objects. That is, the larger objects are proposed in deeper feature maps
with highly-abstracted information, whereas the smaller objects are proposed
in shallower feature maps with fine-grained details. The object proposals from
various intermediate feature maps are combined together to form the outputs
of MSOPN. Then those object proposals are sent to the AODN for accurate
object detection. For detecting small objects appear in groups, AODN combines
several outputs of intermediate layers to increase the resolution of feature maps,
enabling small and densely packed objects to produce larger regions of strong
response.
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A.21 Feature Pyramid Networks for Object Detection (FPN3)

Chengzheng Li, Zhen Cui
czhengli@njust.edu.cn, zhen.cui@njust.edu.cn

FPN3 follows the Faster R-CNN [40] which based the feature pyramid [29],
however we make some modification on its base. In detail, firstly, since most
objects in the VisDrone Dataset are small, we add another stage feature based
on the original P2-P6 layer, we take the output of conv1 which not pass the pool
layer in ResNet [25] as C1, then transform it into P1 whose stride is 1/2 like
what has done in FPN, the anchor size of this stage is 16, the additional stage
is used to detect smaller objects in images. Secondly, we change the up-sample
by nearest pixel which has no parameters into deconvolution layer which has pa-
rameters just like convolution layer, since the layers with parameters have better
performance compared with those without parameters. In the training phase, we
trained two model based on ResNet-50 and ResNet-101 respectively, all training
images are artificially occluded and flipped to make the model more robust. In
the testing phase, we combine the two results from ResNet-50 and ResNet-101
as the final results.

A.22 Dense Feature Pyramid Net (DenseFPN)

Xin Sun
sunxin@ouc.edu.cn

DenseFPN is inspired by Feature Pyramid Networks [29] to detect small ob-
jects on the VisDrone2018 dataset. In the original FPN, they use the low-level
feature to predict small objects. We use the same strategy and fuse high-level
and low-level features in a dense feature pyramid network. Meanwhile, we crop
the training images into small size to avoid the resize operation. Then we merge
the results to obtain the best detection result.

A.23 SJTU-Ottawa-detector (SOD)

Lu Ding, Yong Wang, Qian Chen, Robert Laganière, Xinbin Luo
dinglu@sjtu.edu.cn, ywang6@uottawa.ca, qian chen@sjtu.edu.cn
laganier@eecs.uottawa.ca, losinbin@sjtu.edu.cn

SOD employs a pyramid like predict network to detect objects with large range
of scales because pyramid like representations are wildly used in recognition
systems for detecting objects at different scales [29]. The prediction made by
higher level feature maps contains stronger contextual semantics while the lower
level ones integrate more localized information at finer spatial resolution. These
predictions are hierarchically fused together to make pyramid-like decisions. We
use this pyramid-like prediction network for RPN and region fully convolutional
networks (R-FCN) [7] to perform object detection.
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A.24 Ensemble of four RefineDet models with multi-scale
deployment (RD4MS)

Oliver Acatay, Lars Sommer, Arne Schumann
{oliver.acatay, lars.sommer, arne.schumann}@iosb.fraunhofer.de

RD4MS is a variant of the RefineDet detector [49], using the novel Squeeze-and-
Excitation Network (SENet) [27] as the base network. We train four variants of
the detector: three with SEResNeXt-50 and one with ResNet-50 as base network,
each with its own set of anchor sizes. Multi-scale testing is employed and the
detection results of the four detectors are combined via weighted averaging.

A.25 Improved Light-Head RCNN (L-H R-CNN+)

Li Yang, Qian Wang, Lin Cheng, Shubo Wei
liyang16361@163.com, {844021514,2643105823,914417478}@qq.com

L-H RCNN+ modified the published algorithm light-head R-CNN [28]. Firstly,
we modify the parameter “anchor scales”, replacing 32 × 32, 64 × 64, 128x128,
and 256x256, 512x512 with 16× 16, 32× 32, 64× 64, 128× 128, and 256× 256.
Secondly, we modify the parameter “max boxes of image”, replacing 50 with
600. Thirdly, we perform NMS for all detection objects that belong to the same
category.

A.26 Improved YOLOv3 with data processing (YOLOv3 DP)

Qiuchen Sun, Sheng Jiang
345412791@qq.com

YOLOv3 DP is based on the YOLOv3 model [39]. We process the images of
the training set. Firstly, we remove some images including pedestrians and cars.
Secondly, we increase the brightness of some lower brightness pictures to en-
hance the data. Thirdly, we black out the ignored regions in the image and cut
the image to a size of 512 × 512 with a step size of 400. The images without
objects will be removed. Thus the final training set contains 31, 406 images with
the size of 512× 512.

A.27 RetinaNet implemented by Keras (Keras-RetinaNet)

Qiuchen Sun, Sheng Jiang
345412791@qq.com

Keras-RetinaNet is based on the RetinaNet [30], which is implemented by the
Keras toolkit. The source codes can be found in the website: https://github.
com/facebookresearch/Detectron.
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A.28 Focal Loss for Dense Object Detection (RetinaNet2)

Li Yang, Qian Wang, Lin Cheng, Shubo Wei
liyang16361@163.com, 844021514@qq.com
2643105823@qq.com, 914417478@qq.com

RetinaNet is based on the RetinaNet [30]. The short size of images is set as
800, and the maximum size of the image is set as 1, 333. Each mini-batch has 1
image per GPU for training/testing.

A.29 Multiple-scale yolo network (MSYOLO)

Haoran Wang, Zexin Wang, Ke Wang, Xiufang Li
18629585405@163.com, 1304180668@qq.com

MSYOLO is the multiple scale YOLO network [39]. We divide these categories
into three cases according to the scale of object categories. First of all, ignored
regions and the “others” category is the first case for areas that are not trained.
Second, since many categories are not in the same scale, we divide them into big
objects and small objects on the basis of their scale of boxes. The big objects
include “car”, “truck”, “van” and “bus”, and small objects contain “pedestrian”,
“people”, “bicycle”, “motor”, “tricycle” and “awning-tricycle”. The big objects
as the center of cut images have the scale of 480 × 480, and small objects have
the scale of 320× 320.

A.30 Region-based single-shot refinement network (R-SSRN)

Wenzhe Yang, Jianxiu Yang
wzyang@stu.xidian.edu.cn, jxyang xidian@outlook.com

R-SSRN is based on the deep learning based method called RefineDet [49]. We
do modifications as follows: (1) We remove the deep convolutional layers after
fc7 because they are useless for the VisDrone small objects detection; (2) We
added additional small scales default boxes at conv3 3 and we set new aspect
ratios by using k-means cluster algorithm on the VisDrone dataset. The change
of scales and aspect radios can help default boxes more suitable for the objects;
(3) Due to the small and dense objects, we split each image to 5 sub images
(i.e., bottom left, bot-tom right, middle, top left, top right), where the size of
each sub image is 1/4 of that of original image. After testing the sub images, we
merge them by using NMS.

A.31 A Highly Accurate Object Detectior In Drone Scenarios
(AHOD)

Jianqiang Wang, Yali Li, Shengjin Wang
wangjian16@mails.tsinghua.edu.cn, liyali@ocrserv.ee.tsinghua.edu.cn
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wgsgj@tsinghua.edu.cn

AHOD is a novel detection method with high accuracy in drone scenarios. First,
a feature fusion backbone network with the capability of modelling geometric
transformations is proposed to extract object features. Second, a special object
proposal sub-network is applied to generate candidate proposals using multi-
level semantic feature maps. Finally, a head network refines the categories and
locations of these proposals.

A.32 Hybrid Attention based Low-Resolution Retina-Net
(HAL-Retina-Net)

Yali Li, Zhaoyue Xia, Shengjin Wang
{liyali13, wgsgj}@tsinghua.edu.cn

HAL-Retina-Net is improved from Retina-Net [30]. To detect low-resolution ob-
jects, we remove P6 and P7 from the pyramid. Therefore the pyramid of the
network includes three pathways, named as P3, P3, and P5. We inherit the
head design of Retina-Net. Furthermore, the post-processing steps include Soft-
NMS [3] and bounding box voting. We find that bounding box voting improve
the detection accuracy significantly. Furthermore, we note that by increasing
the normalized size of images the improvement is also significant. To encourage
the full usage of training samples, we split the images into patches with size
640× 640. To avoid out-of-memory in detection, we use SE-ResNeXt-50 [27] as
the backbone network and train the Retina-Net with the cropped sub-images.
To further improve the detection accuracy, we add the hybrid attention mecha-
nism. That is, we use additional SE module [27] and downsample-upsample [46]
to learn channel attention and spatial attention. Our final detection results on
test challenge are based on the ensemble of modified Retina-net with the above
two kinds of attention.

A.33 Small Object Detection in Large Scene based on YOLOv3
(SODLSY)

Sujuan Wang, Yifan Zhang, Jian Cheng
Wangsujuan@airia.cn, {yfzhang,jcheng}@nlpr.ia.ac.cn

SODLSY is used to detect objects in various weather and lighting conditions,
representing diverse scenarios in our daily life. The maximum resolution of VOC
images is 469×387, and 640×640 for COCO images. However, the static images
in VisDrone2018 are even 2000× 1500. Our algorithm first increases the size of
training images to 1184, ensuring the information of small objects is not lost dur-
ing image resizing. Thus, we adopt multi-scale (800, 832, 864, · · · , 1376) training
method to improve the detection results. We also re-generate the anchors for
VisDrone2018.
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A.34 Drone Pyramid Networks (DPNet)

HongLiang Li, Qishang Cheng, Wei Li, Xiaoyu Chen, Heqian Qiu, Zichen Song
hlli@uestc.edu.cn, cqs@std.uestc.edu.cn, weili.cv@gmail.com
xychen9459@gmail.com, hqqiu@std.uestc.edu.cn, szc.uestc@gmail.com

DPNet consists of three object detectors based on Faster R-CNN [40], by Caffe2
deep learning framework, in parallel, on 8 GPUs. The design of DPNet follows
the idea of FPN [29], whose feature extractors are ResNet-50 [25], ResNet101,
and ResNeXt [48], respectively which are pre-trained on ImageNet only. To make
the most use of the data, the main methods are adopted as follows:

– No data other than the train + val dataset are used for network training.
– We train Faster-RCNN with FPN using multiple scales (1000× 1000, 800×

800, 600 × 600) to naturally handle objects of various sizes, generating im-
provement of 4%.

– When selecting the prior boxes, we set multiple specific aspect ratios based
on the scale distribution of the training data.

– We changed the IOU from 0.5 to 0.6 and removed the last fpn layer, yielding
improvement of 1.5%.

We use Soft-NMS [3] instead of conventional nms to select predicted boxes. We
change RoIPooling to RoIAlign [23] to perform feature quantification. We use
multi-scale training and testing. On the val-set, our best single detector has
obtained mAP 49.6%, and the ensemble of three detectors has achieved mAP
50.0%.

A.35 Feature pyramid networks for object detection (FPN)

Submitted by the VisDrone Committee

FPN exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional
networks to construct feature pyramids with marginal extra cost. A top-down ar-
chitecture with lateral connections is developed for building high-level semantic
feature maps at all scales. This architecture, called a Feature Pyramid Network
(FPN), shows significant improvement as a generic feature extractor in several
applications. Please refer to [29] for more details.

A.36 Object Detection via Region-based Fully Convolutional
Networks (R-FCN)

Submitted by the VisDrone Committee

R-FCN is the region-based, fully convolutional networks for accurate and ef-
ficient object detection. In contrast to previous region-based detectors such as
Fast/Faster R-CNN that apply a costly per-region subnetwork hundreds of times,
our region-based detector is fully convolutional with almost all computation



28 Zhu, Wen, Du, Bian, Ling, Hu, et al..

shared on the entire image. To achieve this goal, we propose position-sensitive
score maps to address a dilemma between translation-invariance in image clas-
sification and translation-variance in object detection. Our method can thus
naturally adopt fully convolutional image classifier backbones, such as the latest
Residual Networks (ResNets), for object detection. Please refer to [7] for more
details.

A.37 Towards Real-Time Object Detection with Region Proposal
Networks (Faster R-CNN)

Submitted by the VisDrone Committee

Faster R-CNN consists of RPN and Fast R-CNN. A Region Proposal Network
(RPN) that shares full-image convolutional features with the detection network,
thus enabling nearly cost-free region proposals. An RPN is a fully convolutional
network that simultaneously predicts object bounds and objectness scores at
each position. The RPN is trained end-to-end to generate high-quality region
proposals, which are used by Fast R-CNN for detection. We further merge RPN
and Fast R-CNN into a single network by sharing their convolutional features,
i.e., using the recently popular terminology of neural networks with “attention”
mechanisms, the RPN component tells the unified network where to look. Please
refer to [40] for more details.

A.38 Single Shot MultiBox Detector (SSD)

Submitted by the VisDrone Committee

SSD is a method for detecting objects in images using a single deep neural
network. It discretizes the output space of bounding boxes into a set of default
boxes over different aspect ratios and scales per feature map location. At predic-
tion time, the network generates scores for the presence of each object category
in each default box and produces adjustments to the box to better match the ob-
ject shape. Additionally, the network combines predictions from multiple feature
maps with different resolutions to naturally handle objects of various sizes. Our
SSD model is simple relative to methods that require object proposals because
it completely eliminates proposal generation and subsequent pixel or feature re-
sampling stage and encapsulates all computation in a single network. This makes
SSD easy to train and straightforward to integrate into systems that require a
detection component. Please refer to [32] for more details.
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